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Abstract—This paper introduces a novel neural network model
for rendering binaural audio directly from ambisonic recordings.
We optimized the model end-to-end to learn a direct mapping
between ambisonic and binaural signals. Our approach eliminates
traditional processing steps that were required to mitigate artifacts
due to spherical harmonic order truncation and spatial aliasing, as
well as other complex filtering needed to compensate for near-field
sound sources. To showcase the advantage of neural network-based
rendering over traditional signal processing approaches, we
introduce a new dataset that includes challenging near-field
sound sources, including speech and background noises. We
demonstrate that our model can produce binaural audio results
that closely match the fidelity of ground truth binaural recordings.
Our comprehensive validation shows that the proposed method
outperforms existing methods on several error metrics as well as
in subjective evaluations. Model code, demos and datasets are
available on our project webpage.

Index Terms—ambisonics, spatial audio, binaural audio, neural
rendering, spherical harmonics

I. INTRODUCTION

Spatial audio aims to provide listeners with appropriate
spatial cues, delivering a convincing, engaging, and immersive
audio experience. Rendering binaural signals from ambisonic
recordings is one of the most accessible techniques to reproduce
spatial audio. It is widely used in immersive multimedia
applications [1], [2]. In virtual reality (VR), for example, this
technique creates interactive audio experiences that complement
visual elements; enhancing users’ sense of immersion. The
entertainment industry also employs this approach in music,
film, and gaming to reproduce realistic sound scenes with depth
and directionality cues.

Over the years, researchers have proposed numerous
techniques for rendering binaural audio from ambisonic
recordings [3]. Most of these methods, whether for headphones
or loudspeaker setups, involve processing audio signals in the
spherical harmonics domain and using head-related transfer
functions (HRTFs). However, these rendering techniques often
face constraints due to inherent limitations in both spherical
harmonics and HRTFs.

Spherical harmonics processing, also known as ambisonic
encoding and decoding, offers a mathematically powerful and
convenient way to represent sound fields [4], [5]. However,
sound fields described in spherical harmonics have a restricted
spatial order due to hardware constraints or the need for
efficient higher-order acoustic simulations. This restriction
causes spatial aliasing within the spherical harmonics domain.

Moreover, binaural rendering requires combining the sound
field with an inherently high spatial order HRTF. This disparity
leads to HRTF truncation, resulting in audible distortions
in the binaural signal—such as coloration, poor localization,
and low loudness stability [6], [7]. Additionally, ambisonic
encoding and decoding assume virtual sources and loudspeakers
radiate plane waves from the far field [8]. However, a notable
limitation exists for binaural rendering of near sources: errors
arise due to incorrect accounting for scattering. Near-field
sources, defined as within 0.5–1.0m (or “within arm’s reach”),
have complex wave-front curvatures and frequency-dependent,
highly non-linear distance-energy relationships.

Several techniques have been proposed to reduce spatial
aliasing effects and distortions from HRTF order reduction [9],
[10]. These aim to reduce the HRTFs’ effective spatial order,
resulting in less information lost during the truncation. For
example, by aligning onsets [11] or disregarding HRTF phase
above a given cutoff frequency, assuming it is perceptually
irrelevant [10]. To address limitations for near-field rendering,
solutions like near-field compensation filters [8] and additional
plane-wave expansion [12] have been suggested. However,
these approaches often rely on potentially inaccurate physical or
psychoacoustic models and can be computationally demanding.

Recent neural network-based binaural rendering techniques
show promise in overcoming conventional methods’ limitations.
These approaches can render binaural audio from various
sources, including mono [13]–[16], first-order ambisonic
signals [17], [18], and irregular arrays [19], [20]. Unlike
traditional techniques, neural network models can learn
complex non-linear functions and are not constrained by
linear filters like HRTFs or linear processing using spherical
harmonics transforms. Moreover, while traditional techniques
often prioritize retaining perceptually important information;
end-to-end models are optimized directly based on rendering
results, potentially preserving more nuanced information.

Inspired by recent progress in neural network-based binaural
audio rendering research, we propose a novel waveform-domain
neural network model for rendering binaural audio from
raw ambisonic recordings. Our model extracts sound-field
information from individual channels of the raw ambisonic
recordings, enabling accurate reproduction regardless of sound
source type, direction, or position. By optimizing the model
end-to-end, we learn a direct mapping between ambisonic and
binaural signals. This approach effectively handles near-field
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Fig. 1: Our proposed model architecture. Given M-channel ambisonic audio, each channel is passed through a shared 1D conv network and
then concatenated. We progressively scale-down the feature dimensions using shared 1D conv networks until the desired feature dimension is
achieved. These features pass through N residual blocks. The averaged skip outputs are processed by a small 1D conv network to produce the
binaural waveform. Nonlinear activation/dropout layers are omitted for simplicity.

rendering without cumbersome compensation heuristics and
generates background/diffuse noise sounds that closely match
ground truth binaural recordings. Our modeling technique
avoids frequency domain representation, instead modeling
phase information directly in the waveform domain. This allows
for accurate interaural time difference (ITD) prediction and
offers the flexibility to use head-tracking to rotate the scene
before binaural rendering. In contrast to [17], [18], we have a
fully real-time approach using convolutional neural networks.

We benchmarked our model on two public available datasets
[17], [21]. To address near-field rendering challenges, we
collected more than 20 hours of data simultaneously with
binaural microphone and higher-order ambisonic microphones
(10th-, 4th- and 2nd-order). Using this data, we conducted
a systematic study to highlight the benefits of end-to-end
optimization over conventional methods, particularly in
rendering near-field sources and reproducing background
sounds. The proposed model code, dataset, and results are
publicly available on our project webpage.1

The remainder of this paper is organized as follows:
Section II presents the proposed model and network architecture.
Section III reviews existing datasets and introduces our
new dataset for data-driven ambisonics-to-binaural rendering.
Section IV details the experimental setup. Section V presents
the quantitative and qualitative performance of our method
compared to existing approaches. Finally, Section VI concludes
the paper.

II. PROPOSED MODEL

We propose an end-to-end model that takes raw ambisonic
recordings and outputs the corresponding binaural signals.
Given ambisonic recordings xa ∈ RM×T of length T and M
number of channels, our goal is to generate the corresponding
binaural audio y ∈ R2×T as: F(xa;θ) 7→ y, where F denotes
the ambisonic to binaural transformation function parameterized
by the weights θ of our neural network.

We assume that F models the overall rendering from
multi-channel audio recording to binaural. In the convectional
approach F could represent the signal processing pipeline
which include spherical harmonics encoding and decoding,

1https://github.com/facebookresearch/A2B

HRTF filtering and other handcrafted and manually tuned
parameters like diffuse field equalization [22], [23] and
near-field compensation filters [8], [12], [24].

The model architecture is show in Figure 1 and described as
follows. We build the network based on a bidirectional dilated
convolution architecture that is different from WaveNet [25]
because there is no auto-regressive constraints. The network
composed of a three main sub-modules. The first sub-module is
the waveform encoder, which processes the raw waveform and
produces C channels of intermediate features. These features
maintain the same temporal resolution as the input signal.
Given that the input consists of multichannel audio, we treat
each channel as a distinct image of the sound scene. Instead of
using a multichannel convolution layer, we employ shared 1D
convolution layers and concatenate the output from multiple
channels in the channel dimension. This helps to find the
inter-channel relationship between signals recorded by different
microphones.

The second sub-module consists of a stack of N Residual
layers with C residual channels. These layers are grouped
into b blocks, each containing n = N/b layers. We employ
a bi-directional dilated convolution with a kernel size of 3
in each layer. The dilation doubles with each layer within a
block, i.e. [1, 2, 4, · · ·, 2n−1]. We then average all skip outputs
from the residual blocks. The third sub-module, a compact
two-layer 1D convolution network, processes the mean of these
skip-connection features and outputs a two-channel waveform.

III. PAIRED AMBISONIC-BINAURAL DATASETS

Our data-driven approach required paired ambisonic and
binaural audio recordings. This section briefly outlines existing
ambisonic-binaural audio datasets and introduces our novel
dataset, namely the A2B (Ambisonic to Binaural) dataset.

A. Public Datasets

To the best of our knowledge, only two publicly available
datasets exist: the ByteDance Paired Ambisonic and Binaural
(BTPAB) dataset [17] and the Urban Soundscape dataset [21].
BTPAB contains 49 minutes of a music band recorded in
anechoic chamber using a first-order ambisonics microphone
and a Neumann KU100 binaural head. The Urban Soundscape,
originally collected for urban sounds classification, offers
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Dataset Name Seq. Name Environment Content Amb. Order(#Mic) Length(hr) Offset(meters) NF FF
UrbanSounds [21] - Outdoor/multiple cities Outdoor noises 1(4) 2.21 0.4 ✗✗✗ ✓✓✓
BTPAB [17] - Anechoic Music 1(4) 0.49 0.01 ✗✗✗ ✓✓✓

A2B (Ours)

10-A2B-R1 Semi-Anechoic Speech 10(128) 10.11 0.04 ✗✗✗ ✓✓✓
10-A2B-R2 Standard Room Speech 10(128) 10.32 0.01 ✓✓✓ ✓✓✓
4-A2B-MP Semi-Anechoic Music and Speech 4(32) 6.53 0.0 ✓✓✓ ✓✓✓
2-A2B-MP Semi-Anechoic Music and Speech 2(8) 6.53 0.0 ✓✓✓ ✓✓✓

TABLE I: Summary of Paired Ambisonic-Binaural Datasets. Offset is the closest distance between the binaural head and the ambisonic
microphone. NF and FF columns show if the dataset contains near- and far-field sounds sources, respectively.

diverse sounds from cities around the world. It is recorded
using first-order ambisonics microphone and HEAD acoustics
binaural head, positioned 40cm apart vertically. This height
difference complicates ambisonic to binaural mapping problem
due to significant signal variations. Table I provides additional
details on these datasets.

B. Proposed A2B Dataset

To address the lack of datasets for training and testing neural
rendering performance on near-field sounds and higher-order
ambisonics, we created a new dataset using higher-order
ambisonics microphones and binaural mannequins (HATS
and KEMAR). We named this dataset A2B (Ambisonic to
Binaural). The dataset covers various acoustic environments,
including near-field scenarios and varying numbers of sound
sources, encompassing speech and background noises recorded
simultaneously with a binaural microphone paired with a
higher-order ambisonic microphone. We used 10th-, 4th- and
2nd-order ambisonic microphones.

We collected the A2B dataset in two different acoustic
settings. The first was in a semi-anechoic chamber with both
sensors positioned in the middle and a group of people speaking
within a 1.0m radius. The second was a noisy room with
significant background noise from multiple AC vents, home
appliances and a nearby busy street. In all recordings, we
positioned the ambisonic microphone atop of HATS mannequin,
leaving about 1cm of space between the top of the head and
the lowest point of the ambisonic microphone. Our dataset
features 2 to 5 people in group conversations. We recorded a
total of 16 different individuals. More details about the dataset
capture setup is shown in Figure 2.

All datasets mentioned have positional offsets between
ambisonic and binaural microphone, which causes sound
field mismatches. While end-to-end approaches can adapt to
these mismatches, they disadvantage conventional rendering
techniques when comparing synthesized outputs to ground-truth
binaural signals. To create perfectly matched recordings, we
generated reproducible sound scenes using an ambisonic
loudspeaker array. We used speech from the VCTK dataset
[26] and in-house music data, and created spatialized audio
scenes with random walk patterns via the Spat5 library [27].
We recorded these scenes three times: with a binaural head,
then second-order and fourth-order ambisonic microphones at
the center. We used laser guides to ensure precise positioning.

Our dataset comprises four parts: “10-A2B-R1” and
“10-A2B-R2” (10th-order recordings in semi-anechoic and noisy

environments), and “4-A2B-MP” and “2-A2B-MP” (4th and
2nd-order recordings in semi-anechoic room with matching
sensor positions). We believe the A2B dataset could serve as
a valuable resource for training and benchmarking data-driven
ambisonic-to-binaural mapping techniques. The dataset will be
publicly available.

IV. EXPERIMENTS

A. Implementation Details
Loss Functions: We train the proposed model by minimizing
point-wise L2 loss on the raw waveform L2 and different
STFT based losses in time-frequency domain H = |STFT(y)|,
including spectral converges loss LSC and magnitude difference
loss Lmag:

Ltotal = λl2 L2 + λsc Lsc + λmag Lmag

= λl2 ∥ŷ − y∥2 + λsc
∥Ĥ −H∥2

∥H∥2
+ λmag∥Ĥ −H∥1.

We used multi-resolution STFT [28], which involves computing
an STFT loss at multiple time-frequency scales. In all
experiments, we set FFT size as {128, 512, 1024, 2048},
window length as {80, 240, 600, 1200}, and hop length as
{16, 50, 120, 240}. We set λl2 = 20.0, λsc = 1.0 and
λmag = 10.0.

Model Training: We trained and tested our model on A2B,
BTPAB [17] and UrbanSounds [21] datasets. For A2B dataset
and UrbanSounds, we use 80% of the data for training and
hold out 5% and 15% for validation and testing, respectively.
For BTPAB dataset we followed the train/test spit as used
in [17]. We used AdamW optimizer (learning rate 10−4) and
batch size 32. Models were trained on two NVIDIA H100
GPUs for 400k steps and evaluated on the last epoch.

B. Baselines

We compare our model with the neural network model
proposed for the BTPAB dataset [17]. This is the only
directly comparable pre-existing baseline. We used the
highest-performing model, SCGAD, as reported in [17] as our
baseline. To compare with traditional approach, we adopted
the rendering pipeline MagLS proposed in [29] and used their
open-source reference implementation.

C. Model Evaluation Metrics

Following [17], we used several metrics to asses the quality
of the predicted binaural audio. We measure performance from
two aspects: (1) closeness to the ground truth as measured
by the SDR (Signal-to-Distortion ratio). (2) correctness of
the spatial sound as measured by DILD (Difference in
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Fig. 2: Dataset collection setup for A2B dataset. (a) recording setup with a 10th order ambisonic microphone and binaural mannequin (B+K
HATS), (b) participants during recording in the semi-anechoic room, (c) participants during recording in the “normal” room, (d) loudspeaker
array recording setup for matching position (*-MP) portions of our dataset.

Model SDR (dB) ↑ DILD (dB) ↓ DITD (ms) ↓ # Params (106)
SCGAD [17] 8.300 9.650 0.520 593
MagLS [29] -1.490 15.65 1.180 -
Ours 11.022 1.483 0.042 0.700

TABLE II: Performance comparison of our proposed model with
existing methods on the BTPAB dataset [17]. The results are averaged
across all test recordings. The best results are in bold.

Dataset Model SDR (dB) ↑ DILD (dB) ↓ DITD (ms) ↓ LRE ↓
UrbanSounds Ours 10.807 2.1974 3.875 0.408
10-A2B-R1 Ours 5.805 1.166 0.102 0.214
10-A2B-R2 Ours 9.867 1.486 0.064 0.330

4-A2B-MP MagLS [29] -1.756 3.956 0.204 1.267
Ours 7.270 1.571 0.071 0.180

2-A2B-MP MagLS [29] -3.667 2.617 2.469 2.016
Ours 2.943 1.907 0.097 0.220

TABLE III: The performance of our proposed model on Urbansound
and A2B datasets. We omitted MagLS [29] results on Urbansound,
10-A2B-R1 and 10-A2B-R2, as it would not be a fair comparison.

Interaural Level Difference), DILD (Difference in Interaural
Time Difference) and by LRE (left-right energy ratio error)
as defined in [30]. Higher SDR and lower DILD and LRE
values indicate a good match in energy compared to the ground
truth, while higher DITD implies incorrect time delays in the
binaural signal, hence wrong spatialzations.

D. Subjective Evaluation

We conducted a subjective evaluation based on MUSHRA
(Multiple Stimuli with Hidden Reference and Anchor) [31]
to assess our model’s perceptual quality versus ground-truth
recordings. We followed a similar protocol and rating as used
it [32]. We asked 11 people to rate the audio similarity and
spatialization quality by comparing audio examples from our
model against a traditional magLS [29] approach. They were
asked to rate on a scale ranging from 0 (unrecognizable) to
100 (perfect). To ensure a fair comparison with the traditional
method, we limited listening tests to results on “4-A2B-MP”
and “2-A2B-MP” of the A2B datasets. For all others, we
reported quantitative results.

V. RESULTS AND DISCUSSIONS

Quantitative Results: Table II summerize the result of our
proposed model compared to the baseline SCGAD model
proposed in [17]. Our model outperform SCGAD in all metrics
while being 900× smaller in model parameters.

We compare our proposed model with the traditional
ambisonic rendering technique MagLS [29] on a portion of

Dataset Model Audio Similarity ↑ Spatialization Quality ↑

4-A2B-MP MagLS [29] 29.35± 18.43 34.76± 18.89
Ours 69.1± 17.61 79.06± 13.02
Rec 82.13± 12.96 87.73± 11.11

2-A2B-MP MagLS [29] 17.02± 13.98 24.76± 17.97
Ours 79.57± 15.12 85.39± 12.91
Rec 85.74± 11.60 90.28± 9.837

TABLE IV: Subjective evaluations of our model compared to
conventional MagLS [29] approach. “Rec” indicates that the actual
recordings were used as one of the hidden test signals.

the A2B dataset that contains matched sound scenes. The
results, as presented in Table III, demonstrate that our proposed
model consistently outperforms MagLS across all metrics.
Interestingly, our proposed model and MagLS exhibited
improved performance as the order of ambisonics increased
from 2 to 4. This trend aligns with expectations, as higher-order
ambisonics provide a more detailed spatial representation of the
sound field, ultimately leading to improved binaural rendering
quality.

Subjective Results: The results from the listening evaluation
are shown in Table IV. For both audio similarity and
spatialization scores, listeners gave higher ratings to the
ground-truth recordings. This was expected since we duplicated
the actual recording as a hidden test signal. Our proposed
model’s results were rated statistically competitive with the
ground-truth recordings but significantly higher compared to the
results from the baseline traditional method MagLS. Listeners
commented that they can easily discerned the difference
between MagLS results and the reference signals.

VI. CONCLUSION

In this paper, we have introduced a novel waveform
model for rendering high-fidelity binaural audio directly from
raw ambisonic recordings. Our approach employs end-to-end
optimization techniques to learn a direct, efficient mapping
between ambisonic and binaural signals. This eliminates the
need for complex heuristics typically required in traditional
rendering methods, streamlining the process and potentially
enhancing accuracy. Our experiments demonstrate consistent,
accurate results across various sound scenes, including
challenging near-field sources. This data-driven method
could adapt to different microphone array configurations
beyond ambisonics, such as smart glasses, multi-microphone
smartphones, or custom arrays where binaural microphones or
heads cannot be accommodated during testing.
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